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SUMMARY

We derive a multilevel algorithm to solve variable coefficient elliptic boundary value problems on
adaptively refined structured meshes, and we design a cache optimized version of this algorithm.
The operations are optimized to exploit the cache memory subsystem. We present numerical results
demonstrating the efficiency of the cache optimization. Copyright c© 2003 John Wiley & Sons, Ltd.
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1. Introduction

Patch-based adaptive mesh refinement [2, 3] has become an attractive technique for spatial
discretization in a host of scientific simulations, ranging from shock hydrodynamics [12] to
combustion [5] and plasma physics [15]. The ability to place a refined patch (with a Cartesian
mesh) at any arbitrary location in the domain obviates the need for mesh stretching and
promotes its use with higher-order stencils [13]. Conformal transformation techniques have
extended this technique to nonrectangular/cuboid domains of sufficient complexity to meet
the needs of scientific (as opposed to engineering) simulations [8].
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A large number of scientific problems (e.g. combustion, incompressible hydrodynamics,
magnetohydrodynamics etc) frequently pose a Poisson problem with variable coefficients as a
part of their solution strategy. While this could be formulated as a giant Ax̃ = b̃ problem and
treated with iterative methods (e.g. Krylov methods), the multilevel nature of the grid strongly
suggests multigrid approaches. Further, the (relatively) small data set associated with a patch
lends this approach to cache-based optimization of numerical operations local to a patch i.e.
smoothing. In this paper, we use a combination of adaptive refinement [2, 3, 14] and multilevel
[4, 9, 10] procedures to solve variable coefficient elliptic boundary value problems of the form{

L(φ) = ρ in Ω,
B(φ) = γ on ∂Ω,

(1)

subject to standard conditions that ensure ellipticity and well posedness [1]. The solution
procedure is derived from the adaptive mesh refinement process, not from the multigrid
procedure. Hence, we use notation that is common in the adaptive mesh refinement (AMR)
community.

This research focuses on

1. Implementing cache aware optimizations to multigrid in an AMR context,
2. Modifying a well known AMR multigrid algorithm [9] to do only post-smoothing so that

the cache aware optimizations will have a greater effect.

Cache aware algorithms are designed to minimize the number of times data goes through
cache, thereby increasing the efficiency of the algorithm. Cache memories are much faster than
main memory, so the CPU can be kept more busy when it is getting data from cache memories.
In an AMR context, we modify Gauss-Seidel so that all the data required by the smoothing
iterations needs to be brought into a cache only once, not many times, and it still gets the
exact same answer as the standard algorithm (i.e. bitwise compatibility). In order to further
improve the efficiency of cache usage, we do only post-smoothing and combine the residual
computation with the smoother. In this way all of the smoothing and the residual computation
for each level of a V cycle can be accomplished while bringing the data into cache just once.

Doing post-smoothing only is a substantial change over the AMR algorithm used in [9]. It
is especially useful when implementing cache aware algorithms as discussed in §5. We see far
better cache effects when more smoothing iterations are done consecutively. Further, reducing
the work that is done outside of the smoother means that speeding up the smoother will have
a greater impact on the whole algorithm.

The variable coefficient problem that we present here is different from a constant coefficient
or Poisson problem since there is the coefficient matrix that has to be fetched into cache along
with the solution and right hand side. This poses the problem of how to store the coeffiencent
matrix to facilitate the cache aware optimizations as discussed in §5.

This paper assumes the reader is familiar with discretization and numerical solution of
partial differential equations [6, 11, 17].

In §2, we provide a mathematical background. In §3, we present a 2D example. In §4, the
multilevel adaptive mesh refinement method is described. In §5, we discuss cache aware Gauss-
Seidel and the V cycle. In §6, we present numerical results.

Many very highly technical intermediate details have been left out of this article. The omitted
material is in [16].
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2. Mathematical Background

The basic algorithms are geometrically inspired. Definitions are based on a domain (or
subdomain) rather than a grid perspective. This is standard in adaptive grid refinement
literature but less standard in multigrid literature.

We begin by assuming that Ω is overlaid by a union of tensor product meshes Λ1,j ,
j = 1, . . . , n1 that form a grid in Ω:

Λ1 =
n1⋃

j=1

Λ1,j , where Λ1 ⊂ Ω.

Normally n1 = 1. However, the method works for n1 > 1, too. This is referred to as the level 1,
or coarsest grid. Operators are defined on it later.

An adaptive mesh refinement procedure is used to define many patches. The set of local grid
patches corresponding to `− 1 refinements (1 < ` ≤ m̀ax) is denoted

Λ` =
n⋃̀

j=1

Λ`,j and Λ m̀ax+1 = ∅.

The Λ`,j are tensor product meshes that have been obtained by adaptively refining the Λ`−1,j

meshes. The definition for Λ m̀ax+1 is a convenience that simplifies a number of the algorithms
we define throughout this paper. We define the domains Ω` and Ω`,j as the minimum domains
that include Λ` and Λ`,j , respectively. Normally, Ω` is a union of disconnected subdomains (one
subdomain corresponding to each level ` patch). Note that within an adaptive grid refinement
code m̀ax can change (increase or decrease) during the course of solving an actual problem.

The AMR procedure defines a composite grid, Λc
m̀ax , and more generally, a composite grid

hierarchy, 1 < ` ≤ m̀ax, by

Λc
` =

⋃̀
i=1

(Λi − P(Λi+1)), (2)

where P is the projection operator discussed below. The `th composite grid, Λc
`, contains all

points from the `th level patches, Λ`, as well as additional points from regions not covered
by the patches. The new grid points correspond to mesh points from patches on lower levels,
always taking from patches on the closest possible level.

We use projection and refinement operators P and R, respectively. The notation is standard
adaptive mesh refinement notation but is different from multigrid notation (where the symbols
are unfortunately reversed). The operators are used interchangeably with either domains Ω`

or grids Λ`. In terms of domain and grid superscripts, P projects from “fine to coarse,” i.e.,
`→`− 1 and R refines from “coarse to fine,” i.e., `→` + 1.

We require nesting of domains

Ω m̀ax⊆Ω m̀ax−1⊆ · · ·⊆· · ·Ω1 ≡ Ω,

which can be written as

R(P(Ω`+1)) ⊆ Ω`+1 and P(Ω`+1) ⊆ Ω`

Copyright c© 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 0:0–0
Prepared using nlaauth.cls



CACHE AWARE AMR MG 3

Λ4

Λ3

Λ2

Λ1

s
s s s ss

ss s s s
s

sssss s
sssss

Figure 1. A sample grid hierarchy.

and

Ω =
m̀ax⋃
`=1

(Ω` − P(Ω`+1)), where Ω m̀ax+1 = ∅.

The use of tensor product meshes allows for fairly straightforward finite difference and finite
volume stencils to define the discrete operator. At internal patch boundaries, however, some
care must be taken. We define ghost points near internal patch boundaries and use quadratic
interpolation to acquire values at these points so that locally equispaced unknowns are available
for use with regular stencils within most of the computations. When computing composite grid
residuals, however, more complicated stencils are needed for coarse points adjacent to finer
grid patches. This is formally covered in §3. The main idea is to use the same interpolated
values for the stencils on both the fine grid side and the coarse grid side when updating
points that are adjacent to a coarse-fine interface. Hence, the fluxes used to approximate
the operator across the coarse-fine interfaces are matched and continuity of the first derivate
(i.e. C1 continuity) is enforced. This is referred to as flux matching. The C1 continuity at
the boundary between the coarse and fine subdomains can be precisely defined in terms of the
derivatives of the quadratic functions that interpolate the ghost points. See §3 for details of the
ghost point interpolation procedure. The key point is that enforcing C1 continuity preserves
the second order convergence of the method. Especially for problems with severe fronts or near
discontinuities, C0 continuity alone is not always sufficient. The boundaries of the domains,
{∂Ω`}, are required to meet the condition

∂Ω`+1 ∩ ∂Ω` ⊆ ∂Ω

which ensures that the flux matching procedure that we use is well defined and of the right
approximation order near patch boundaries in the interior of Ω [9].

We approximate the solution to (1) using a multigrid algorithm to numerically solve the
finite dimensional problem

L m̀ax
c φ m̀ax

c = ρ m̀ax
c , (3)

where L m̀ax
c is a matrix representing the discretization on Λ m̀ax

c , φ m̀ax
c are the unknowns,

and ρ m̀ax
c is the right hand side. Conceptually, the grid hierarchy used within the multigrid

procedure is the composite grid hierarchy defined above. In practice, we design the
implementation to be patch based (see §4). A simple 1D AMR patch hierarchy is illustrated
in Figure 1. In the figure, the dots represent grid points and the vertical lines represent either
a physical boundary or a patch boundary. A patch is a maximal set of contiguous grid points
on a given level of the grid hierarchy. There can be multiple patches per level, although the

Copyright c© 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 0:0–0
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Figure 2. Composite grid hierarchy corresponding to the sample grid in Figure 1.

grid hierarchy in Fig. 1 has only one patch per level. Figure 2 illustrates the corresponding
composite grid hierarchy for the simple 1D example. Each level in this composite grid hierarchy
is a composite grid defined in (2). Equation (3) is defined on the highest level composite grid,
namely Λ m̀ax

c . Operators L`
c are matrices representing the discretizations on composite grids

Λ`
c for all `. In §4, we define patch based versions of the discrete operator.

3. An Example

This section describes the tools that are needed to define patch based versions of the discrete
operators used by the multilevel method presented in §4. The specific form of equation (1)
that this discussion will address is{

−∇ · (a∇u) = ρ, in Ω,
u = γ, on ∂Ω,

where Ω is a rectangular domain and γ is a constant. In addition, this example will assume
isotropic mesh spacing h = ∆x = ∆y. To discretize the variable coefficient problem we use
a control volume approach [11]. Fig. 3 illustrates the stencils for an interior cell, an edge cell
and a corner cell. The region within the dashed lines is the control volume, denoted by V . The
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Figure 3. Stencils. The dark lines in (b) and (c) represent boundaries.

boundary of the control volume, represented by the dashed lines, is denoted by ∂V . Formulas
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for the stencils are achieved by discretizing the integral form

−
∫

∂V

a
∂u

∂n
=

∫
V

ρ.

The formula for interior cells is the usual, the same as for vertex centered grids. The
discretization for the edge stencil gives

an(un − uo)
∆y

· 3
4
∆x − as(uo − us)

∆y
· 3
4
∆x +

ae(ue − uo)
1
2∆x

·∆y − aw(uo − uw)
∆x

·∆y = −3
4
∆x∆yρo,

which reduces to

(an + as +
8
3
ae +

4
3
aw)uo − anun − asus −

4
3
awuw −

8
3
aeue = h2ρo,

assuming h = ∆x = ∆y. The discretization for the corner stencil gives

an(un − uo)
1
2∆y

· 3
4
∆x − as(uo − us)

∆y
· 3
4
∆x +

ae(ue − uo)
1
2∆x

· 3
4
∆y − aw(uo − uw)

∆x
· 3
4
∆y = − 9

16
∆x∆yρo,

which reduces to

(
8
3
an +

4
3
as +

8
3
ae +

4
3
aw)uo −

8
3
anun −

4
3
asus −

4
3
awuw −

8
3
aeue = h2ρo,

when h = ∆x = ∆y.
In order to apply the discrete operator at interfaces between coarse and fine grids, ghost

points are interpolated around patches. These ghost points are used to complete the stencils
on the fine grid side of interfaces. A flux matching procedure, employing the ghost points, is
used to define the operator on the coarse grid side of an interface. The ghost point interpolation
and flux matching procedures are described in the following subsections.

3.1. Ghost Point Interpolation

In order to apply regular stencils at the boundary points of patches and enforce flux matching
at the coarse-fine interfaces, we need to interpolate values at ghost points around the edges of
the patches. This section explains how to do these interpolations. They are necessary for both
of the patch based operators L` and Lnf,` defined in §4.

3.1.1. One Coarse-Fine Interface Values are needed at the ⊗ ghost points for the one-sided
coarse-fine interface illustrated in Figure 4(a). There are two steps.

Step 1: Compute values for the the � points. Let a = u( u
A), b = u( u

B) and c = u( u
C), and

let h be the mesh spacing on the finer grid. We derive a C1 quadratic interpolation formula

u(x) = c0 + c1x + c2x
2,

Copyright c© 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 0:0–0
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Figure 4. Interpolation of Ghost Points. The dark edge in (c) indicates a boundary.

where c0 = a, c1 = 1
h (b− 1

4c− 3
4a), and c2 = 1

h2 ( 1
8c− 1

4b + 1
8a). Then

u(�1) = c0 + c1(
3
2
h) + c2(

3
2
h)2 , and u(�2) = c0 + c1(

5
2
h) + c2(

5
2
h)2.

Step 2: Compute values for the ⊗ points. Let a = u(•α), b = u(•β) and c = u(�1), and let h
be the mesh spacing on the finer grid. Again, we derive a C1 quadratic interpolation formula
using

u(x) = c0 + c1x + c2x
2,

where c0 = a, c1 = − 1
15h (21a− 25b + 4c), and c2 = 2

15h2 (3a− 5b + 2c). Then

u(⊗γ) = c0 + c1(2h) + c2(2h)2.

The procedure is analogous for the other ⊗ point.

3.1.2. Two Coarse-Fine Interfaces Ghost point interpolation at a two-sided coarse-fine
interface is illustrated in Figure 4(b). Again, values are needed at the ⊗ points, and there
are two steps. The notation c{0,1,2} refers generically to the coefficients associated with each
interpolation. The values of the coefficients are not the same for every interpolation.

Step 1: Use the same system as in Step 1 of §3.1.1, once in each direction, to get the coefficents
c{0,1,2} needed to compute values for the � points.

Step 2: Use the same system as in Step 2 of §3.1.1, twice in the x-direction and once in the
y-direction, to get the coefficents c{0,1,2} needed to compute values for the ⊗ points.

3.1.3. At a Boundary Ghost point interpolation at a coarse-fine interface adjacent to a
boundary is illustrated in Figure 4(c). Once again, values are needed at the ⊗ points, and
there are two steps.

Step 1: Compute values for the � points as in Step 1 of the previous sections. Use a = u( u
A),

b = u( u
B) and c = u( e).

Step 2: Compute values for the ⊗ points by the same system as in Step 2 of §3.1.1.

Copyright c© 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 0:0–0
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3.2. Flux Matching

This section introduces the flux-matching computations. Flux matching is used to avoid one-
sided derivatives and preserve C1 continuity. It is necessary for the patch based operator L`

used in §4.
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Figure 5. Flux matching for the variable coefficient case. The dark edge in (c) represents a boundary.

See Fig. 5 for illustrations. The regions within the dashed lines are the control volumes,
denoted by V . The boundary of the control volumes, represented by the dashed lines, are
denoted by ∂V .

The grid points on edges represent coefficient values. The grid points in cells represent
solution values, as usual. For example, an = a( b

n) and un = u( u
n).

Discretizing the integral form

−
∫

∂V

a
∂u

∂n
=

∫
V

ρ

gives
−(fn − fs + fe − fw) = h2ρo,

where the fluxes f{n,s,e,w} for the different cases are given in the following sections (assuming
isotropic mesh spacing h = ∆x = ∆y).

3.2.1. One Coarse-Fine Interface See Fig. 5(a). The fluxes for this case are

fn = an(un − uo), fs = as(uo − us),
fe = ae(ue − uo), fw = aw1(uα − uw1) + aw2(uβ − uw2).

3.2.2. Two Coarse-Fine Interface See Fig. 5(b). The fluxes here differ from §3.2.1 only in
the south flux:

fs = as1(uα − us1) + as2(uβ − us2).

3.2.3. At a Boundary See Fig. 5(c). The fluxes for this case are

fn = 2an(un − uo), fs = as(uo − us),
fe = 3

4ae(ue − uo), fw = aw1(uα − uw1) + 1
2aw2(uβ − uw2).

Copyright c© 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 0:0–0
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4. Adaptive Mesh Refinement Multilevel Method

Algorithm 1 AMR Multigrid V cycle.

MG( `, e`, r`, ρ`, φ m̀ax )

1: if ` == 1 then
2: e` ← S`(e`, r`) on Λ`

3: φ m̀ax ← φ m̀ax + e` on Λ` − P(Λ`+1)
4: return
5: end if
6: if ` == `max then
7: r` = ρ` − Lnf,`(φ`, φ`−1)
8: end if
9: e` ← 0; e`−1 ← 0

10: e` ← S`(e`, r`) on Λ`

11: φ`,temp ← e` + φ m̀ax on Λ` − P(Λ`+1)
12: r̂` ← r` − Lnf,`(e`, e`−1) on Λ`

13: r`−1 ← P`r̂` on P(Λ`)
14: r`−1 ← ρ`−1 − L`−1(φ`,temp, φ`−1, φ`−2) on Λ`−1 − P(Λ`)
15: MG( `− 1, e`−1, r`−1, ρ`−1, φ m̀ax )
16: e` ← e` +R`−1e`−1

17: r` ← r` − Lnf,`(e`, e`−1) on Λ`

18: ē` ← 0
19: ē` ← S`(ē`, r`) on Λ`

20: e` ← e` + ē` on Λ`

21: φ m̀ax ← φ m̀ax + e` on Λ` − P(Λ`+1)

The AMR multigrid algorithm is shown in Alg. 1. The patch based discrete operators L`

and Lnf,` are restrictions of the composite grid operator onto the patches on level ` with the
interfaces between coarse and fine patches handled by ghost points and flux matching as shown
in §3. The operator L` operates on Λ`−P(Λ`+1) using ghost points to complete the stencil at
the exterior boundary of the patch and using flux matching to update the points at interior
boundaries where there are finer grid patches. The operator Lnf,` operates on entire patches
Λ` ignoring finer levels and, hence, does not require the flux matching procedure.

4.1. Post-smoothing only

Alg. 1 can be sped up considerably by only doing post-smoothing, as illustrated in Alg. 2.
There are several advantages to this approach:

1. The initial guess only needs to be set (to 0) on the base grid.

Copyright c© 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 0:0–0
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Algorithm 2 Multigrid V cycle with post-smoothing only

MG (`, e`, r`, ρ`, φ m̀ax )

1: if ` == `max then
2: r` = ρ` − Lnf,`(φ`, φ`−1)
3: end if
4: if ` == 1 then
5: e1 ← 0
6: Solve L1

ce
1 = r1 on Λ1

7: else
8: r`−1 ← P`r` on P(Λ`)
9: r`−1 ← ρ`−1 − L`−1(φ`, φ`−1, φ`−2) on Λ`−1 − P(Λ`)

10: MG (`− 1, e`−1, r`−1, ρ`−1, φ m̀ax )
11: e` ← R`e`−1 {Includes interpolation of ghost points.}
12: e` ← S`(e`, r`) on Λ`

13: end if
14: φ m̀ax ← φ m̀ax + e` on Λ` − P(Λ`+1)

2. There is no need for a temporary correction φ`,temp on the projection side of the V cycle.
3. r̂ does not need to be computed.
4. The residual is only computed on one side of the V cycle.
5. There is no correction after interpolation and no need for an intermediate correction step

before updating φ m̀ax .
6. The residual is not updated on the interpolation side of the V cycle.

5. Cache Aware Gauss-Seidel and V Cycle

Consider naturally ordered Gauss-Seidel restricted to matrices Aj which are based on
discretization methods which are local to only 3 neighboring rows of the grid. Partition the
grid into blocks of ` rows, and let m be the number of smoothing iterations required. It is
necessary that ` + m − 1 rows of an N×N grid G fit entirely into cache simultaneously and
that m < `.

There are two special cases to the cache aware algorithm: the first block of rows and the
rest of the blocks.

The first case is for the first ` rows of the grid. The data associated with rows 1 to ` is
brought into cache. The data in rows 1 to ` −m + 1 are updated m times, and the data in
rows j, `−m + 2≤j≤`, are updated `− j + 1 times.

The second case is for the rest of the blocks of ` rows of the grid. Once the first block of grid
rows is partially updated, we have a second block to update and must also finish updating the
first block of grid rows. After the ith update in the second block, we can go back and update

Copyright c© 2003 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2003; 0:0–0
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10 D. T. THORNE

rows ` down to `− i + 1 in the first block of rows, always performing the updates in the order
that preserves the dependencies in the standard iteration (so that the cache aware iteration
will achieve bitwise the same answer as the standard iteration). This procedure is repeated
in the remaining blocks of rows until all the blocks are updated. In effect, this is a domain
decomposition methodology applied to the standard iteration. The result is that m updates
are done while bringing all the data through cache only one time.

5.1. Multigrid with the residual computation integrated into the smoother

Integrating the residual computation with the cache-aware smoother can give better cache-
effects in multigrid. Call this the combined smoother. The combined smoother is implemented
for the post-smoothing only version of the algorithm.

The combined smoother computes the residual to be used in the next V cycle. It can only
compute the part of the residual that is not covered by finer patches. On the projection side
of the V cycle, the projection of the part of the residual that is from finer patches must now
include the application of the flux matching procedure, because information needed for the
flux matching is not available when the combined smoother is called.

A complication to interleaving the residual computation with the cache aware smoother is
that, in the V cycle, the residual is updated and concurrently used as the right hand side
for the Gauss-Seidel updates. So the residual updates need to be postponed long enough to
avoid changing the right hand side for a subsequent Gauss-Seidel update. In addition, residual
updates at the patch boundaries require updated ghost points around the patch, so ghost point
interpolation must also be interleaved with the cache aware smoother.

5.2. Effects of the Coefficient Matrix

The coefficient matrix has an effect on the cache optimizations since it has to go through
cache along with the solution and right hand side. In an attempt to minimize the effect, we
tried storing the right hand side in the coefficient matrix in an interleaved manner. Hence, for
a given grid point, the coefficients and the right hand side needed to update that point are
contiguous in memory. However, the split residual computation complicates this approach. On
every level, there are parts of the domain where the residual has to be computed from the
right hand side, and there are parts of the domain where the residual is projected from finer
levels. Depending on the context, the right hand side entries in the coefficient matrix might
need to be either the original right hand side or the current residual. Updating the state for a
given context involves copies which slow the algorithm. Results in the AMR context are better
when the right hand side and residual are separate from the coefficient matrix.

6. Numerical Results

This section shows results on the hierarchies illustrated in Fig. 6 and also on a full domain
refinement hierarchy (i.e. regular, non-AMR multigrid). The refinement patterns are not
meaningful to the nature of the problem being solved here. They are contrived merely to
demonstrate the behavior of the algorithm. The AMR base grid in 6(a) is 128 × 512 grid
points, and there are three levels of refinement above that (although only two are illustrated).
The AMR base grid in 6(b) and 6(c) is 256 × 1024 grid points, and there are four levels of
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(a) (c)(b)

Figure 6. (a) One refinement per patch. (b) Two refinements per patch. (c) Four refinements per patch.

Cache Aware Smoother Cache Aware MG
Full Domain 1.3530 1.6335
One Patch 1.2522 1.7120
Two Patches 1.2550 1.8221
Four Patches 1.2415 1.6780

Table I. Itanium 1 speedups versus standard multigrid.

Cache Aware Smoother Cache Aware MG
Full Domain 1.2080 1.4057
One Patch 1.1697 1.5791
Two Patches 1.1519 1.6245
Four Patches 1.1352 1.5176

Table II. Itanium 2 speedups versus standard multigrid.

refinement above that (although only two are illustrated). Geometric multigrid is used as the
solver on the AMR base grid. The full domain refinement case starts on an 8 × 32 base grid
and has a total of 7 grid levels.

The tables show results for the AMR multilevel method employing the cache-aware smoother
and the combined smoother (as described in §5.2) compared with a standard implementation
of the smoother. We call the combined smoother case cache aware multigrid.

The base grid discretizes the rectangle [0, 1] × [0, 4]. The right hand side of the Poisson
equation is chosen so that the solution is u(x, y) = sin(πx) sin(πy/4)xex2+(y/4)2 and the
coefficient is a(x, y) = 1 + sin(πx) sin(πy/4)xex2+(y/4)2 . The initial guess on the base grid
is u = 0, and the convergence criteria is ||rc|| < 10−6||ρc||.

Table I shows the results of the set of experiments run on an Itanium 1. Table II shows the
results of the set of experiments run on a Itanium 2. Table III shows the results of the set of
experiments run on a Pentium III. Table IV shows the results of the set of experiments run on
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Cache Aware Smoother Cache Aware MG
Full Domain 1.4339 1.6402
One Patch 1.3500 1.8728
Two Patches 1.3161 1.8257
Four Patches 1.1478 2.1175

Table III. Pentium III speedups versus standard multigrid.

Cache Aware Smoother Cache Aware MG
Full Domain 1.1434 1.3000
One Patch 1.0675 1.3379
Two Patches 1.0713 1.4019
Four Patches 1.0548 1.2758

Table IV. Pentium IV speedups versus standard multigrid.

Machine Speedup
Pentium III 2.3431
Pentium IV 1.2298
Itanium 1 1.8721
Itanium 2 1.5209

Table V. Speedups for the cache aware smoother alone.

a Pentium IV. These experiments show the speedups associated with the cache optimizations.
The timings measure only the solution procedure. They do not include initialization of the
hierarchy, coefficient matrix and right hand side. The total speedups are up to about a factor
of two. Table V shows the speedups associated with performing smoothing alone, outside of
the context of a multilevel method.

The speedups (not shown) for doing post-smoothing only versus doing pre-smoothing and
post-smoothing are around 20% with the cache aware smoother. Note that both cases do the
same total number of smoothing iterations per level. In particular, the pre-/post-smoothing
case uses 2 smoothing iterations on each side of the V. The post-smoothing only case uses 4
smoothing iterations on only one side of the V.

6.1. Conclusions

We experimented with cache aware smoothers and integration of the residual computation with
the cache aware smoother. Both of these give good speedups in many cases. The integration of
the residual computation is especially useful for getting good speedups on AMR hierarchies.

Modifying the algorithm to do post-smoothing only is key to realizing good performance in
the AMR context. It takes better advantage of the cache aware smoother since the smoothing
iterations on each level are all contiguous.

Future plans for this research include experimenting with three dimensional problems and
parallel algorithms. Progress is already being made toward both of those topics. In addition,
we are going to experiment with a variety of other cache optimization techniques (beyond mere
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row based blocking). The 3D case, in particular, needs more sophisticated approaches, such as
those discussed in [7].
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